高伟

2021-12-07 11:35:00

学习及工作经历:

2009.09-2013.07 广东工业大学获学士学位;

2014.09-2017.07 华南理工大学获工学硕士学位,导师为郭建华教授;

2017.09-2019.12 广东工业大学获工学博士学位,导师为李京波教授;

2020.11-2021.11 入选广东省青年优秀人才国际培养计划博士后项目,新加坡南洋理  工大学范卫军教授课题组访学。

2020.03-2023.07 新宝3线路检测中心特聘副研究员,专业型硕士生导师;

2023.08-至今 新宝3线路检测中心副研究员,学术型/专业型硕士生导师;

招生方向:

每年招收4名微电子学与固体电子学、电子信息(新一代、集成电路工程方向)研究生,本人有时严肃有时亲切,难以捉摸,主要提供半导体材料、半导体器件、半导体工艺技术相关课题。欢迎乖巧听话、态度认真、善于沟通和思考的男生女生报考。

从事方向:

主要从事二维异质结可重构光电晶体管及其逻辑/光电应用研究、二维范德瓦尔斯体系及其隧道晶体管的输运与光电应用研究、偏振二维三元半导体材料的大规模合成和应用研究、高性能肖特基二极管的制备与多功能应用研究、基于第三代宽禁带半导体SiC/二维材料异质结的输运研究、GaN 沟槽HEMT功率器件设计及其紫外探测应用。主持国家自然科学基金青年基金项目(2021.01-2023.12),“新型二维范德瓦尔斯体系及其隧道晶体管的输运性能研究”;主持过中国博士后科学基金第67批面上资助项目二等资助(2020.07-2023.03),“SnS1-xSex合金纳米片的物理与偏振光电子研究”;以参与单位主持广州市重点领域研究计划(2021.01-2024.1),“半导体量子点光源材料关键技术及器件验证”。2017年至今发表SCI论文共81篇,其中第一/共一/通讯作者共36篇,与厦门大学物理学院张峰团队合作发表4篇SCI在ACS Applied Materials & Interfaces、Advanced electronic MaterialsJournal of Materials Chemistry C、IEEE Transactions on Electron Devices国际期刊上;与河南师范大学夏从新团队合作发表3篇SCI在NanoscaleJournal of Materials Chemistry C、Applied Physics Letters;授权5项国家发明专利。

行政职务:

2022.03-2023.03 院长助理

2023.03-2024.03 院长助理

主讲课程:

研究生专业必修课《现代半导体器件物理》,学时48

本科生专业必修课《集成电路导论》,学时32

本科生专业实验课《信号与系统》,学时16

通讯邮箱:

gaowei317040@m.scnu.edu.cn

gaowei317040@126.com

328384791@qq.com

 

一、肖特基二极管

1. Wang H, Li Y, Gao P, et al. Polarization‐and Gate‐Tunable Optoelectronic Reverse in 2D Semimetal/Semiconductor Photovoltaic Heterostructure[J]. Advanced Materials, 2023: 2309371.

2. Huang J, Shu K, Bu N, et al. Reconfigurable WSe2 Schottky heterojunctions for logic rectifiers and ultrafast photodetectors[J]. Science China Materials, 2023: 1-12.

3. Ma J, Wang J, Chen Q, et al. Vertical 1T’‐WTe2/WS2 Schottky‐Barrier Phototransistor with Polarity‐Switching Behavior[J]. Advanced Electronic Materials, 2300672.

4. Li H, Huang J, Gao P, et al. Room-Temperature Near-Infrared and Self-Powered Photodetectors Based on Graphite/WTe 2/Ge Mixed van der Waals Heterostructure[J]. IEEE Transactions on Electron Devices, 2023, 70(5): 2358-2363.

5. Huang Y, Yu H, Gao W, et al. Diverse modes regulated photoresponse and high-resolution imaging based on van der Waals semimetal PtTe2/semiconductor MoTe 2 junctions[J]. Journal of Materials Chemistry C, 2023, 11(15): 5045-5055.

6. Wu J, Luo D, Wen P, et al. Engineering the Polarization Sensitivity in All‐2D Photodetectors Composed of Semimetal MoTe2 and Semiconductor WS2[J]. Advanced Optical Materials, 2022, 10(24): 2201902.

7. Wang H, Gao W, Wen P, et al. Light‐Regulated Anti‐Ambipolar Transport with Multi‐Logic States in Metal‐WSe2‐Metal Transistor[J]. Advanced Electronic Materials, 2022, 8(12): 2200649.

8. Wang J, Wang H, Chen Q, et al. A Weyl semimetal WTe2/GaAs 2D/3D Schottky diode with high rectification ratio and unique photocurrent behavior[J]. Applied Physics Letters, 2022, 121(10).

9. Zhang L, Han X, Zhang S, et al. Gate‐Tunable Photovoltaic Behavior and Polarized Image Sensor Based on All‐2D TaIrTe4/MoS2 Van Der Waals Schottky Diode[J]. Advanced Electronic Materials, 2022, 8(11): 2200551.

10. Zhang L, Han X, Wen P, et al. Weyl-semimetal TaIrTe4/Si nanostructures for self-powered Schottk photodetectors[J]. ACS Applied Nano Materials, 2022, 5(5): 6523-6531.

11. Han X, Wen P, Zhang L, et al. A polarization-sensitive self-powered photodetector based on a pWSe2/TaIrTe4/n-MoS2 van der Waals heterojunction[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61544-61554.

12. Sun Y, Xiong J, Wu X, et al. Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2[J]. Nano Research, 2022:1-8.

13. Gao W, Zhang S, Zhang F, et al. 2D WS2 based asymmetric Schottky photodetector with high performance[J]. Advanced Electronic Materials, 2021, 7(7): 2000964.

14. Lu J, Zheng Z, Yao J, et al. An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response[J]. Nanoscale, 2020, 12(13): 7196-7205.

二、P-N 结

1. Jiang M, Zheng T, Zhang J, et al. Gate‐Modulated Polarity Transition and Polarization‐Sensitive Photodetection Enabled by Sandwiching Anisotropic GeSe in vdW Heterojunction[J]. Advanced Optical Materials, 2303217.

2. Ma J, Chen S, Zhao L, et al. 2D Double Heterostructure Infrared Photodetector with Type‐III Band Alignment by Incorporating Bi2Se3 Layer[J]. Advanced Optical MatZhang Q, Wu Z, Chen X, et al.

3. Ta2NiSe5/MoTe2/Graphene van der Waals Heterostructures Toward Ultrabroadband and Polarization‐Sensitive Imaging[J]. Advanced Optical Materials, 2024: 2302958.erials, 2302563.

4. Li L, Deng Q, Sun Y, et al. 2D Short‐Channel Tunneling Transistor Relying on Dual‐Gate Modulation for Integrated Circuits Application[J]. Advanced Functional Materials, 2023, 33(45): 2304591.

5. Zheng T, Yang M, Pan Y, et al. Self-Powered Photodetector with High Efficiency and Polarization Sensitivity Enabled by WSe2/Ta2NiSe5/WSe2 van der Waals Dual Heterojunction[J]. ACS Applied Materials & Interfaces, 2023.

6. Huang Z, Luo Z, Deng Z, et al. Integration of Self‐Passivated Topological Electrodes for Advanced 2D Optoelectronic Devices[J]. Small Methods, 2023, 7(6): 2201571.

7. Li S, Zhang J, Li Y, et al. Anti-ambipolar and polarization-resolved behavior in MoTe2 channel sensitized with low-symmetric CrOCl[J]. Applied Physics Letters, 2023, 122(8).

8. Yang B, Gao W, Li H, et al. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging[J]. Nanoscale, 2023, 15(7): 3520-3531.

9. Yan Y, Li J, Li H, et al. Unipolar barriers in near-broken-gap heterostructures for high-performance selfpowered photodetectors[J]. Applied Physics Letters, 2023, 122(4).

10. Liu Z, Shu K, Yang Y, et al. Integrating Graphene Enables Improved and Gate‐Tunable Photovoltaic Effect in Van der Waals Heterojunction[J]. Advanced Optical Materials, 2023, 11(6): 2202646.

11. Luo Z, Xu H, Gao W, et al. High‐Performance and Polarization‐Sensitive Imaging Photodetector Based on WS2/Te Tunneling Heterostructure[J]. Small, 2023, 19(15): 2207615.

12. Li S, Zhang J, Zhu L, et al. Reconfigurable and Broadband Polarimetric Photodetector[J]. Advanced Functional Materials, 2023, 33(11): 2210268.

13. Huang Z, Zhou Y, Luo Z, et al. Integration of photovoltaic and photogating effects in a WSe 2/WS 2/pSi dual junction photodetector featuring high-sensitivity and fast-response[J]. Nanoscale Advances, 2023, 5(3): 675-684.

14. Yang M, Luo Z, Gao W, et al. Robust Deposition of Sub‐Millimeter WSe2 Drive Ultrasensitive Gate‐Tunable 2D Material Photodetectors[J]. Advanced Optical Materials, 2022, 10(19): 2200717.

15. Gao P, Yang M, Wang C, et al. Low-pressure PVD growth SnS/InSe vertical heterojunctions with typeII band alignment for typical nanoelectronics[J]. Nanoscale, 2022, 14(39): 14603-14612.

16. Li L, Gao G, Liu X, et al. Polarization‐Resolved p‐Se/n‐WS2 Heterojunctions toward Application in Microcomputer System as Multivalued Signal Trigger[J]. Small, 2022, 18(34): 2202523.

17. Luo Z, Yang M, Wu D, et al. Rational design of WSe2/WS2/WSe2 dual junction phototransistor incorporating high responsivity and detectivity[J]. Small Methods, 2022, 6(9): 2200583.

18. Xiong J, Dan Z, Li H, et al. Multifunctional GeAs/WS2 Heterojunctions for Highly Polarization-Sensitive Photodetectors in the Short-Wave Infrared Range[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22607-22614.

19. Zhang N, Wu L, Gao W, et al. Near‐Infrared, Self‐Powered and Polarization‐Sensitive Photodetector Based on GeSe–MoTe2 p–n Heterojunction[J]. Advanced Materials Interfaces, 2022, 9(15): 2200150.

20. Wu L, Gao W, Sun Y, et al. Polarity‐Switchable and Self‐Driven Photo‐Response Based on Vertically Stacked Type‐III GeSe/SnS2 Heterojunction[J]. Advanced Materials Interfaces, 2022, 9(12): 2102099.

21. Zhou Y, Han L, Song Q, et al. Hybrid 1D/2D heterostructure with electronic structure engineering toward high-sensitivity and polarization-dependent photodetector[J]. Science China Materials, 2022, 65(3): 732-740.

22. Zheng T, Yang M, Sun Y, et al. A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors[J]. Journal of Materials Chemistry C, 2022, 10(18): 7283-7293.

23. Tao L, Li S, Yao B, et al. Raman anisotropy and polarization-sensitive photodetection in 2D Bi2O2Se–WSe2 heterostructure[J]. ACS omega, 2021, 6(50): 34763-34770.

24. Wen P, Zhang L, Gao W, et al. Gate‐tunable photovoltaic effect in MoTe2 lateral homojunction[J]. Advanced Electronic Materials, 2022, 8(5): 2101144.

25. Zhao Q, Gao F, Chen H, et al. High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition[J]. Materials Horizons, 2021, 8(11): 3113-3123.

26. Yang M, Gao W, He M, et al. Self-driven SnS1-xSex alloy/GaAs heterostructure based unique polarization sensitive photodetectors[J]. Nanoscale, 2021, 13(36): 15193-15204.

27. Sun, Y., Gao, W., Li, X., Xia, C., Chen, H., Zhang, L., ... & Li, J. (2021). Anti-ambipolar behavior and photovoltaic effect in p-MoTe2/n-InSe heterojunctions. Journal of Materials Chemistry C, 9, 10372-10380.

28. Shu, K. Gao, W. Wan, F., Yang, S., Dan, Z., Wu, L., ... & Li, J. (2021). High-Performance Broadband Photodetectors Based on n-MoS2/p-Ge0.9Sn0.1 Heterojunctions. ACS Applied Electronic Materials, 3(7), 3218-3225.

29. Xiong J, Sun Y, Wu L, et al. High Performance Self‐Driven Polarization‐Sensitive Photodetectors Based on GeAs/InSe Heterojunction[J]. Advanced Optical Materials, 2021, 9(20): 2101017.

30. Han L, Yang M, Wen P, et al. A high performance self-powered photodetector based on a 1D Te–2DWS2 mixed-dimensional heterostructure[J]. Nanoscale Advances, 2021, 3(9): 2657-2665.

31. Gao W, Zheng Z, Huang L, et al. Self-powered SnS1-xSex alloy/silicon heterojunction photodetectors with high sensitivity in a wide spectral range[J]. ACS applied materials & interfaces, 2019, 11(43): 40222-40231.

32. Lu J, Zheng Z, Yao J, et al. 2D In2S3 Nanoflake Coupled with Graphene toward High‐Sensitivity and Fast‐Response Bulk‐Silicon Schottky Photodetector[J]. Small, 2019, 15(47): 1904912.

33. Lu J, Zheng Z, Gao W, et al. Epitaxial growth of large-scale In2S3 nanoflakes and the construction of a high performance In2S3/Si photodetector[J]. Journal of Materials Chemistry C, 2019, 7(39):12104-12113.

34. Gao W, Zhang F, Zheng Z, et al. Unique and tunable photodetecting performance for two-dimensional layered MoSe2/WSe2 p–n junction on the 4H-SiC substrate[J]. ACS applied materials & interfaces, 2019, 11(21): 19277-19285.

35. Gao W, Zheng Z, Li Y, et al. Out of plane stacking of InSe-based heterostructures towards high performance electronic and optoelectronic devices using a graphene electrode[J]. Journal of Materials Chemistry C, 2018, 6(46): 12509-12517.

三、N-N 结

1. Sang Y, Xu M, Huang J, et al. Polarization-sensitive UV photodetector based on ReSe2/GaN mixeddimensional heterojunction[J]. Optics Letters, 2023, 48(23): 6108-6111.

2. Chen Z, Huang J, Yang M, et al. Bi2O2Se Nanowire/MoSe2 Mixed-Dimensional Polarization-Sensitive Photodiode with a Nanoscale Ultrafast-Response Channel[J]. ACS Applied Materials & Interfaces, 2023.

3. Dan Z, Yang B, Song Q, et al. Type-II Bi2O2Se/MoTe2 van der Waals Heterostructure Photodetectors with High Gate-Modulation Photovoltaic Performance[J]. ACS Applied Materials & Interfaces, 2023, 15(14): 18101-18113.

4. Zhang Z, Han L, Dan Z, et al. Type II Homo-Type Bi2O2Se Nanosheet/InSe Nanoflake Heterostructures for Self-Driven Broadband Visible–Near-Infrared Photodetectors[J]. ACS Applied Nano Materials, 2023, 6(6): 4573-4583.

5. Tao L, Yao B, Yue Q, et al. Vertically stacked Bi 2 Se 3/MoTe 2 heterostructure with large band offsets for nanoelectronics[J]. Nanoscale, 2021, 13(36): 15403-15414.

6. Zhou Y, Zhang L, Gao W, et al. A reasonably designed 2D WS 2 and CdS microwire heterojunction for high performance photoresponse[J]. Nanoscale, 2021, 13(11): 5660-5669.

7. Yue Q, Gao W, Wen P, et al. High performance DUV-visible 4H-SiC-based multilayered SnS 2 dualmode photodetectors[J]. Journal of Materials Chemistry C, 2021, 9(43): 15662-15670.

8. Dan Z, Wang C, Gao W, et al. Improved photodetection performance enabled by gradient alloyed quantum dots[J]. APL Materials, 2021, 9(8).

四、单一沟道

1. Zhao L, Liang Y, Ma J, et al. Ultra‐Steep‐Slope and High‐Stability of CuInP2S6/WS2 Ferroelectric Negative Capacitor Transistors by Passivation Effect and Dual‐Gate Modulation[J]. Advanced Functional Materials, 2023, 33(44): 2306708.

2. Niu Y, Zhou X, Gao W, et al. Interfacial Engineering of In2Se3/h-BN/CsPb (Br/I) 3 Heterostructure Photodetector and Its Application in Automatic Obstacle Avoidance System[J]. ACS nano, 2023, 17(14): 13760-13768.

3. Yu H, Gao W, Huang Y, et al. Dielectric engineering for improvement of mobility and photoelectric performance in 2D BiI3[J]. Semiconductor Science and Technology, 2022, 37(8): 085002.

4. Xia M, Chen D, Li Y, et al. Magnetic Circular Dichroism Study of Electronic Transition in Metal Fe3GeTe2[J]. The Journal of Physical Chemistry C, 2022, 126(18): 8152-8157.

5. Pan Y, Zhao Q, Gao F, et al. Strong In-Plane Optical and Electrical Anisotropies of Multilayered γ-InSe for High-Responsivity Polarization-Sensitive Photodetectors[J]. ACS applied materials & interfaces, 2022, 14(18): 21383-21391.

6. Wen P, Li S, Shu W, et al. Anisotropic Shubnikov-de Haas effect in topological Weyl semimetal MoTe2[J]. Applied Physics Letters, 2021, 119(24).

7. Yang M, Yan J, Ma C, et al. Optical Resonance Coupled with Electronic Structure Engineering toward High‐Sensitivity Photodetectors[J]. Advanced Optical Materials, 2021, 9(22): 2101374.

8. Yang M, Gao W, Song Q, et al. Universal strategy integrating strain and interface engineering to drive high‐performance 2D material photodetectors[J]. Advanced Optical Materials, 2021, 9(15): 2100450.

9. Sun Y, Wu L, Yang M, et al. Anomalous Hall Effect and Magneto-Optic Kerr Effect in Pt/Co/Pt Heterostructure[J]. Magnetochemistry, 2022, 8(5): 56.

10. Tao L, Yao B, Wen P, et al. Circular SnS0. 5Se0. 5 nanosheets with highly anisotropic performance for nanoelectronics[J]. ACS Applied Nano Materials, 2020, 3(10): 10270-10283.

11. Li L, Gao W, Chen H, et al. Strong Anisotropy and Piezo‐Phototronic Effect in SnO2 Microwires[J]. Advanced Electronic Materials, 2020, 6(5): 1901441.

12. Lu J, Yao J, Yan J, et al. Strain engineering coupled with optical regulation towards a high-sensitivity In2S3 photodetector[J]. Materials Horizons, 2020, 7(5): 1427-1435.

13. Gao W, Zheng Z, Li Y, et al. High performance tin diselenide photodetectors dependent on thickness: A vertical graphene sandwiched device and interfacial mechanism[J]. Nanoscale, 2019, 11(28): 13309-13317.

14. Gao W, Li Y, Guo J, et al. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0≤ x≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto) electronic properties[J]. Nanoscale, 2018, 10(18): 8787-8795.

五、GaN HEMT

1. Liu H, Wang Y, Liu C, et al. GaN-on-Sapphire Vertical Trench MOSFET Array with High-Performance Ultraviolet (UV) Photoresponse[J]. ACS Applied Optical Materials, 2023, 1(8): 1485-1491.

2. Wang Y, Liu C, Qian H, et al. Light-triggered 2D electron gas in a GaN-based HEMT with sandwiched p-GaN layers[J]. Optics Letters, 2023, 48(16): 4376-4379.

3. Liu C, Wang Y, Liu H, et al. High-Performance Ultraviolet Photodetector Arrays Based on Recessed-Gate HEMT with a Buried p-GaN Layer[J]. ACS Applied Electronic Materials, 2024.

六、综述

1. Gao W, Zheng Z, Wen P, et al. Novel two-dimensional monoelemental and ternary materials: growth, physics and application[J]. Nanophotonics, 2020, 9(8): 2147-2168


中国授权发明专利:

1. 冯星;胡真;高伟;杨亿斌;李京波. 一种二维材料及其剥离方法和应用;ZL 2018 1 0643771.0

2. 李京波;张帅;高伟;张峰;岳倩;郑涛.一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用; ZL 2021 1 0251934.2

3. 李京波;岳倩;高伟;张峰;张帅;郑涛.一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用; ZL 2021 1 0251925.3

4. 黄颖;高伟;霍能杰;李京波. 一种大面积层状二维材料的剥离及其转移方法; ZL 2021 1 0318141.8

5. 张帅;高伟;霍能杰;李京波. 一种基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管及其制备方法;ZL 2021 1 1488447.4